A New Approach to Constructing Quadratic Pseudo-Planar Functions over $\gf_{2^n}$

نویسنده

  • Longjiang Qu
چکیده

Planar functions over finite fields give rise to finite projective planes. They were also used in the constructions of DES-like iterated ciphers, error-correcting codes, and codebooks. They were originally defined only in finite fields with odd characteristic, but recently Zhou introduced pesudo-planar functions in even characteristic which yields similar applications. All known pesudo-planar functions are quadratic and hence they give presemifields. In this paper, a new approach to constructing quadratic pseudo-planar functions is given. Then five explicit families of pseudo-planar functions are constructed, one of which is a binomial, two of which are trinomials, and the other two are quadrinomials. All known pesudo-planar functions are revisited, some of which are generalized. These functions not only lead to projective planes, relative difference sets and presemifields, but also give optimal codebooks meeting the Levenstein bound, complete sets of mutually unbiased bases (MUB) and compressed sensing matrices with low coherence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise

This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...

متن کامل

New Quadratic Bent Functions in Polynomial Forms with Coefficients in Extension Fields

In this paper, we first discuss the bentness of a large class of quadratic Boolean functions in polynomial form f(x) = ∑n 2 −1 i=1 Tr n 1 (cix 1+2i) + Tr n/2 1 (cn/2x 1+2n/2), where ci ∈ GF (2) for 1 ≤ i ≤ n 2 − 1 and cn/2 ∈ GF (2). The bentness of these functions can be connected with linearized permutation polynomials. Hence, methods for constructing quadratic bent functions are given. Furthe...

متن کامل

A new almost perfect nonlinear function which is not quadratic

Following an example in [13], we show how to change one coordinate function of an almost perfect nonlinear (APN) function in order to obtain new examples. It turns out that this is a very powerful method to construct new APN functions. In particular, we show that the approach can be used to construct “non-quadratic” APN functions. This new example is in remarkable contrast to all recently const...

متن کامل

On the duality of quadratic minimization problems using pseudo inverses

‎In this paper we consider the minimization of a positive semidefinite quadratic form‎, ‎having a singular corresponding matrix $H$‎. ‎We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method‎. ‎Given this approach and based on t...

متن کامل

Persistency for higher-order pseudo-boolean maximization

A pseudo-Boolean function is a function from a 0/1-vector to the reals. Minimizing pseudo-Boolean functions is a very general problem with many applications. In image analysis, the problem arises in segmentation or as a subroutine in task like stero estimation and image denoising. Recent years have seen an increased interest in higher-degree problems, as opposed to quadratic pseudo-Boolean func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1609.01178  شماره 

صفحات  -

تاریخ انتشار 2016